Upper Bounds on Matching Families in $\mathbb{Z}_{pq}^n$
نویسندگان
چکیده
Matching families are one of the major ingredients in the construction of locally decodable codes (LDCs) and the best known constructions of LDCs with a constant number of queries are based on matching families. The determination of the largest size of any matching family in Zm, where Zm is the ring of integers modulo m, is an interesting problem. In this paper, we show an upper bound of O((pq)) for the size of any matching family in Zpq , where p and q are two distinct primes. Our bound is valid when n is a constant, p → ∞ and p/q → 1. Our result improves an upper bound of Dvir et al.
منابع مشابه
On Codes over $\mathbb{Z}_{p^2}$ and its Covering Radius
This paper gives lower and upper bounds on the covering radius of codes over $\mathbb{Z}_{p^2}$ with respect to Lee distance. We also determine the covering radius of various Repetition codes over $\mathbb{Z}_{p^2}.$
متن کاملCross-Error Correcting Integer Codes Over $\mathbb{Z}_{2^m}$
In this work we investigate codes in Zn2m that can correct errors that occur in just one coordinate of the codeword, with a magnitude of up to a given parameter t. We will show upper bounds on these cross codes, derive constructions for linear codes and respective decoding algorithm. The constructions (and decoding algorithms) are given for length n = 2 and n = 3, but for general m and t.
متن کاملOn the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملNew Subexponential Fewnomial Hypersurface Bounds
Suppose $c_1,\ldots,c_{n+k}$ are real numbers, $\{a_1,\ldots,a_{n+k}\}\!\subset\!\mathbb{R}^n$ is a set of points not all lying in the same affine hyperplane, $y\!\in\!\mathbb{R}^n$, $a_j\cdot y$ denotes the standard real inner product of $a_j$ and $y$, and we set $g(y)\!:=\!\sum^{n+k}_{j=1} c_j e^{a_j\cdot y}$. We prove that, for generic $c_j$, the number of connected components of the real ze...
متن کاملExtensions of Regular Rings
Let $R$ be an associative ring with identity. An element $x in R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if there exist $g in G$, $n in mathbb{Z}$ and $r in R$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). A ring $R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if every element of $R$ is $mathbb{Z}G$-regular (resp. strongly $...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.0980 شماره
صفحات -
تاریخ انتشار 2013